Culvert Hydraulic Design Calculator
MKS System | Circular Concrete Pipe | Inlet & Outlet Control Analysis
Input Parameters
1. ⚙️ Input Parameters for Solved Example
| Parameter | Symbol | Value | Unit | Description |
|---|---|---|---|---|
| Design Flow (50-yr) | $Q$ | 6.37 | $$\text{m}^3/\text{s}$$ | Critical design flow. |
| Pipe Diameter | $$D$$ | 1.40 | $$\text{m}$$ | |
| Culvert Length | $$L$$ | 10.00 | $$\text{m}$$ | |
| Barrel Slope | $$S$$ | 0.01 | $$\text{m/m}$$ | |
| Manning's Roughness | $$n$$ | 0.012 | - | Concrete pipe. |
| Entrance Loss Coeff. | $$k_e$$ | 0.50 | - | Square Edge Headwall. |
| Tailwater Depth (50-yr) | $$TW$$ | 1.22 | $$\text{m}$$ | Water depth downstream. |
| Inlet Invert Level | $$\text{Invert}_{\text{In}}$$ | 100.00 | $$\text{m}$$ | |
| Road Top Level (RTL) | $$\text{RTL}$$ | 103.40 | $$\text{m}$$ | |
| Allowable Headwater | $$\text{HW}_{\text{Allow}}$$ | 3.05 | $$\text{m}$$ | Maximum acceptable $$\text{HW}$$. |
2. 🧮 Step-by-Step Calculation (50-Year Flow: $Q=6.37\ \text{m}^3/\text{s}$)
A. Preliminary Calculations
1. Full Pipe Area ($A$):
$$A = \frac{\pi D^2}{4} = \frac{\pi (1.40)^2}{4} = 1.54\ \text{m}^2$$2. Full Pipe Velocity ($V$):
$$V = \frac{Q}{A} = \frac{6.37}{1.54} = 4.14\ \text{m/s}$$3. Invert Drop ($\Delta Z$):
$$\Delta Z = S \times L = 0.01 \times 10.00 = 0.10\ \text{m}$$Outlet Invert Level = $$100.00 - 0.10 = 99.90\ \text{m}$$
B. Inlet Control Analysis ($$\text{HW}_{\text{Inlet}}$$)
Inlet control headwater is determined by the control section at the entrance, acting as an orifice or weir. The calculation uses the submerged flow formula (FHWA HDS-5 simplified form) as the calculated Critical Depth is close to or greater than $D$.
1. Critical Depth ($$d_c$$): (Calculated iteratively)
$$d_c = 1.43\ \text{m}$$2. Velocity Head ($$\frac{V^2}{2g}$$): ($$g = 9.81\ \text{m/s}^2$$)
$$\frac{V^2}{2g} = \frac{(4.14)^2}{2 \times 9.81} = 0.87\ \text{m}$$3. Inlet Headwater ($$\text{HW}_{\text{Inlet}}$$):
$$\text{HW}_{\text{Inlet}} = d_c + (1 + k_e) \frac{V^2}{2g} = 1.43 + (1 + 0.50) \times 0.87 \approx \mathbf{2.80}\ \text{m}$$C. Outlet Control Analysis ($$\text{HW}_{\text{Outlet}}$$)
Outlet control headwater is the sum of the outlet depth and all energy losses minus the invert drop.
$$ \text{HW}_{\text{Outlet}} = h_o + H_L - \Delta Z $$1. Outlet Depth ($$h_o$$): The water depth at the outlet is $$\max(TW, D)$$.
$$h_o = \max(1.22\ \text{m}, 1.40\ \text{m}) = 1.40\ \text{m}$$2. Entrance Loss ($$h_e$$):
$$h_e = k_e \frac{V^2}{2g} = 0.50 \times 0.87 = 0.44\ \text{m}$$3. Friction Loss ($$h_f$$): ($$R = D/4 = 0.35\ \text{m}$$)
$$h_f = \frac{n^2 L V^2}{R^{4/3}} = \frac{(0.012)^2 \times 10.00 \times (4.14)^2}{(0.35)^{4/3}} = 0.09\ \text{m}$$4. Exit Loss ($$h_{\text{exit}}$$):
$$h_{\text{exit}} = 1.0 \times \frac{V^2}{2g} = 1.0 \times 0.87 = 0.87\ \text{m}$$5. Total Head Loss ($$H_L$$):
$$H_L = h_e + h_f + h_{\text{exit}} = 0.44 + 0.09 + 0.87 = 1.40\ \text{m}$$6. Outlet Headwater ($$\text{HW}_{\text{Outlet}}$$):
$$\text{HW}_{\text{Outlet}} = 1.40 + 1.40 - 0.10 = \mathbf{2.70}\ \text{m}$$D. Governing Headwater and Design Checks
1. Governing Headwater ($$\text{HW}_{\text{Gov}}$$):
$$\text{HW}_{\text{Gov}} = \max(\text{HW}_{\text{Inlet}}, \text{HW}_{\text{Outlet}}) = \max(2.80\ \text{m}, 2.70\ \text{m}) = \mathbf{2.80}\ \text{m}$$Control Type: Inlet Control
3. 📊 Solved Example Summary and Design Status
| Design Check | Calculated Value | Limit/Target | Status |
|---|---|---|---|
| **Governing HW** ($$\text{HW}_{\text{Gov}}$$) | 2.80 m | Allowable $$\text{HW}$$: 3.05 m | SAFE (2.80 m $$\le$$ 3.05 m) |
| Max HW Elevation | 102.80 m | RTL: 103.40 m | - |
| **Freeboard** ($$\text{RTL} - \text{HW}_{\text{Elev}}$$) | 0.60 m | Min Target: 0.30 m | SAFE (Sufficient Cushion) |
| **Outlet Velocity** ($$V_{\text{out}}$$) | 5.17 m/s | Max Target: $$\approx$$ 5.0 m/s (Without protection) | HIGH (Requires Scour Protection) |
💡 Design Recommendation
The culvert diameter of $$1.40\ \text{m}$$ provides adequate hydraulic capacity, as the resulting headwater is below the allowable level. However, the high exit velocity of $$\mathbf{5.17\ \text{m/s}}$$ necessitates the design and installation of a **rip-rap apron or other energy dissipator** at the culvert outlet to prevent downstream scour and erosion.
0 Comments
If you have any doubts, suggestions , corrections etc. let me know